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ABSTRACT

A new algorithm is presented using a logarithmic barrier

function decomposition for the solution of the large-scale

multicommodity network flow problem. Placing the com-

plicating joint capacity constraints of the multicommodity

network flow problem into a logarithmic barrier term of the

objective function creates a nonlinear mathematical

program with linear network flow constraints. Using the

technique of restricted simplicial decomposition, we

generate a sequence of extreme points by solving

independent pure network problems for each commodity in a

linear subproblem and optimize a nonlinear master problem

over the convex hull of a fixed number of retained extreme

points and the previous master problem solution.

Computational results on a network with 3,300 nodes and

10,400 arcs are reported for four, ten and 100 commodities.
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I. INTRODUCTION

Multicommodity network flow problems emerge when several
distinct commodities flow through a common capacitated

network and share one or more arcs that are subject to joint

capacity constraints. The objective is usually to find the

minimum cost flow given demands and supplies of the com-

modities. Problems of this type are also referred to as

"multicommodity capacitated transshipment problems" and

"multicommodity flow problems" (MCFPs).

The problem of optimizing MCFPs arises frequently in

logistic systems. As long as only a single commodity is

involved, even large-scale problems can now be solved

routinely by specialized network codes that exploit the pure

network structure of the problem (e.g., GNET by Bradley,

Brown, and Graves [Ref. 1]) . Such solvers are not directly

applicable to the general MCFP, and general linear program

solvers are usually inapplicable as a result of the large

constraint matrix encountered with typical MCFPs.

0_ Because of the importance of the MCFP, much effort has

been devoted to finding efficient, specialized solution

techniques. Earlier surveys are given by Kennington [Ref. 2]

and Assad [Ref. 3]. New and effective decomposition methods

,N. were recently developed by Staniec [ Ref.4] and show



encouraging results. This paper extends that research by

deriving and implementing a decomposition for the MCFP based

on a logarithmic barrier function.

A. STATEMENT OF THE PROBLEM

In order to formulate the MCFP as a mathematical program

the following notation is used :

G = {I,J} is a network with set of nodes I and set

of arcs J.

P is the set of commodities (products) flowing on G.

i e I is a node of G.

j e J is an arc of G.

p e P is a commodity flowing through G.

SNp is an III x IJI node-arc incidence matrix for each

product (NI = N2 = ... = N Ip ) "

N is an IV'IPi x iJ".Pi matrix with matrices Np

along the diagonal, Os elsewhere.

A is a IJI x IJV'IPI matrix (I,I,.I)

c = (cl,...,Cp I I) is a vector of arc costs, length

-.JL IJI'IPI.

x = (xl,...,xIp I) is a vector of arc flows, length

IJIPI.

bI is a vector of joint capacities with length IJI.
b1 is the vector (bl,...,b I ) with length IJV'IPI.

b2  is the vector of supplies and demands for each

commodity with length IJI" P1.

S2



Then the MCFP may be stated as follows

(P) min cx (duals) (1)

s.t. Ax : bI  (ul) (2)

Nx = b2  (u2 ) (3)

0 x b (u3 ) (4)

For the constraint sets (3) and (4) the abbreviated notation

x E F will be used.

The stipulation that binds the flow of several com-

modities to joint capacities is given by (2) and constitutes

the set of "complicating constraints". Without those con-

straints, the problem would reduce to independent, bounded,

* single-commodity flow problems. The duals u, corresponding

to (2) are nonpositive. The constraints (4) are redundant,

but they ensure that x is bounded when the constraints in (2)

are relaxed.

B. SOLUTION METHODOLOGY

The two basic approaches to solving the MCFP (other than

a standard primal linear programming method) can be charac-

terized as either decomposition or partitioning techniques.

The latter employ a special basis factorization within a

simplex algorithm in such a way that portions of each

generated basis maintain characteristics of the pure network

flow problem. Those method are not investigated here. For

further detail see Kennington and Helgason [Ref. 5].

3



Decomposition methods solve MCFP by using a master

problem that coordinates the solution of single network flow

subproblems. These methods are attractive, since they may

require the internal storage of only one commodity at a time.

This approach can further be divided into resource-directive

and price-directive algorithms. Both will be stated here for

later reference.

The resource-directive method uses a master problem that

distributes improving capacity allocations to the individual

commodity subproblems. For this purpose MCFP may be written

as

(P') min min cx (5)
y x

s.t. Ay = b I  (6)

x - y < 0 (7)

Nx = b2  (8)

0 y bI (9)

0 x < 91" (10)

Any vector y satisfying constraints (6) and (9) may be

interpreted as a "capacity allocation" which apportions the

capacity of an arc across the individual commodities. The

inner minimization for a fixed y amounts to a restriction of

(P). If its solution is feasible in (P), it yields an upper

bound on the optimal solution.

b44
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The subproblems for a particular allocation vector y are

of the form

(SPI(y)) V(y) = min cx (11)

s.t. Nx = b2  (12)

O:x y (13)

which is a set of single-commodity minimum cost flow

problems, solved independently for each commodity.

The master problem than becomes

(MP1) min V(y) (14)

s.t. Ay < b I  (15)

0 ! y < b1 . (16)

The objective function in (14) is piecewise linear and

convex. In theory, the master problem can be solved by

subgradient optimization or by a cutting plane algorithm.

Penalty and barrier function decomposition are examples

of price-directive decomposition. Before describing them, it

- 'is worthwhile looking at the Lagrangian relaxation of (P).

If the joint capacity constraints are placed into the

objective function with multipliers uI < 0, the Lagrangian

dual of (P) is

.,(LR) max min L(ul,x) = cx + ul(b1 - Ax) (17)
u0lO xO

st. x e F.

S
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This problem corresponds to solving max LR(uI ) where

LR(u) is defined by 
0

(LR(ul)) min cx u I (Ax - bl)
xr F

Smin (c - ulA)x + u 1 b I . (18)

Nxr F

Note that the evaluation of LR(ul) requires the solution of

IPI independent single commodity problems. Furthermore, for

any fixed uI < 0, LR(ul) yields a lower bound on (P) and this

bound will be tight if u, is optimal in (P):

LR(u I ) = cx

LR(u I ) is a piecewi~e linear and concave function that

o can be optimized, in theory, by subgradient optimization (for

example, see Fisher [Ref. 6], Goffin [Ref. 7] or Sandi [Ref.

8]), or by a cutting plane method ( see Kelly [Ref. 9]).

Optimization of LR(u1 ) by a cutting plane algorithm is

essentially equivalent to solving the MCFP by Dantzig-Wolfe

decomposition (see Staniec, [Ref. 4]).

However, even if (18) is solved optimally, it is possible

that LR(I) = cx for a, 0 ul*. Furthermore, we may not be

able to obtain a corresponding primal solution that is

S feasible to problem (P).

Solving LR(ul) for any u I  generally allows some

constraints to be violated with penalty -ul(Ax - bl). Other

* penalty functions are possible which will, at least in a

limiting sense, yield optimal primal solutions. The

6
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objective function in (P) can be transformed into a nonlinear

auxiliary function Q(h,x) that typically includes a polynom-

ial penalty term of the form

ht

(PP(h)) min Q(h,x) = cx + h IlI(Ax - b l ) + l t (19)
xeF t

= cx + q(h,x) (20)

where II i t indicates the tth norm, and (Ax - bl) + is the
%t

vector max(O,Ax - bl), i.e. the vector of violations of the

constraint set (2). The value of h constitutes a positive,

increasing sequence of penalty parameters. Furthermore,

t > 1 is required for this method to ensure convergence.

The penalty function has some attractive properties, as

given in Luenberger [ Ref. 10] : Let { hk I and ( xk ) be

sequences of penalty parameters and optimal solutions to

(PP(hk)), respectively, with hk+l > hk and ho > 0. Then

Q(hk,xk) < Q(hk+l xk+l) (21)

q(hk, xk) q(hk+l,xk+l), and (22)

CXk  cxk+l (23)

The algorithm converges to the optimal solution. Thus,

* kk
lim Q(hk,xk) = cx , andx -x .
h -c

Since a feasible solution is usually not obtained until final0

convergence occurs, the penalty approach is classified as an

exterior point algorithm.

7



In order to obtain intermediate feasiole solutions a

i suitable scaling or projection procedure may be used. If we

model the MCFP to include additional bypass arcs which

satisfy any undeliverable demand at a high cost from a

supersource, we can assume that any allocation of capacity

satisfying (6) and (9) is also feasible in F. One pos-
A

sibility to obtain such capacity allocations y from a given
A Avector x E F is given by defining y = CA(x) as

A AA

x pjblj / (Ax) if (Ax-b1 ) j > 0

A fypj = (24)

A A (Axb)<0
SXpj + (bI - Ax)j /IPJ if (AX-bl)j < 0.

A 

J

Then, a solution of (SPl(y)) as defined in (24) yields a
% Avalid upper bound at the current iterate x. This allocation

procedure was successfully applied by Staniec (Ref. 4].

The idea behind the general barrier function approach is

just the opposite of the exterior point penalty methods.

Starting with a feasible solution which lies within the

interior of the constraint region, a modified objective

function establishes a barrier against leaving the feasible

region. For the MCFP, the auxiliary function with respect to

the joint capacity constraints then becomes

(BP(h)) min B(h,x) = cx + b(h,x). (25)

xeF

-
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An ideal barrier term b(x) would take the value zero for

all interior points and infinity at the boundary. A sequen-

tial barrier function b(h,x) omits this discontinuity and may

take the following forms
-1 (26)

b(h,x) = h Ij (bI - Ax)jor

b(h,x) = - h Ij ln(b I - Ax)j, (27)

where (bI - Ax)j denotes the jth component of the vector

(b I - Ax).

The first expression (26) is called the "inverse barrier

function" and the second term (27) the "logarithmic barrier

function" (see, for example, Fiacco and McCormick [Ref. 11]

or Bazaraa and Shetty [Ref. 12]). Both functions approach

the ideal barrier function b(x) as h -- 0. Any barrier

algorithm requires the existence of an interior region, i.e.

it does not work for equality constraints.

The logarithmic barrier function was first proposed by

Frisch 1955 [Ref. 13]. It was then derived together with the

inverse barrier function from the Kuhn-Tucker conditions for

optimality by Fiacco and McCormick [Ref. 11]. The logarith-

mic barrier function has obtained recent attention in linear

programming due to its fundamental properties. Megiddo [Ref.

14] investigates the properties of a weighted logarithmic

barrier function for general linear programs that places the

nonnegativity constraints on x into the barrier term while

requiring strictly positive values for x. This approach

9



leads to a smooth path through the interior of the constraint

region towards the optimal solution and theoretically

validates its use in linear programming. Gill, Murray,

Saunders, Tomlin and Wright [Ref. 15] established a close

relationship to the projective linear programming algorithms

initiated by Karmarkar [Ref. 16].

The transformation of the objective function into a

penalty or barrier function creates a nonlinear programming

problem which requires an efficient solution method to make

such transformation profitable. Staniec [Ref.4] successful-

ly applied the method of restricted simplicial decomposition

(RSD) in order to solve the penalty function decomposition.

The idea was developed by Hearn, Lawphongpanich and Ventura

[Ref. 17]. RSD solves any pseudoconvex optimization problem

with linear constraints by generating extreme points in

linear subproblems while a master problem optimizes the

original objective function over a simplex derived from a

fixed number of retained extreme points plus the last

iterate, i.e. the last solution to the master problem. The

implementation of this method for the MCFP will be described

later in more detail since it proves useful for the barrier

decomposition as well.

C. TEST PROBLEMS

A real-world large-scale MCFP should be used in order to

examine the efficiency of the proposed algorithms. Staniec

10



developed an appropriate problem that describes the

transshipment of conventional ammunition from production and

storage locations to overseas debarkation points and theatre-

of-war locations via capacitated road, rail, sea and air

transportation links. The product demands are time-phased

and the objective is to minimize the weighted deviation from

on-time deliveries. The network contains backlogging arcs

with graduated penalties and bypass arcs that satisfy

undeliverable demand at high cost. For more details see

Staniec (Ref. 4 and 18]. The same network is used to test

and compare the algorithms for four, ten, and 100 commodity

problems. The underlying network contains 3,300 nodes and

10,400 arcs of which about 10% are subject to non-redundant

capacity constraints.

S
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II. THE CONCEPT OF BARRIER FUNCTION DECOMPOSITION

The original MCFP (P) constitutes a linear program. It

is only the size of the problem that makes a primal simplex

algorithm unattractive and computationally expensive.

Penalty and barrier functions were initially designed for

nonlinear programming problems where they proved useful in

converting a constrained nonlinear optimization problem into

an unconstrained nonlinear problem. For the special case of

the MCFP, penalty and barrier functions provide good

0 decomposition tools.

The barrier function decomposition for the MCFP retains

the basic decomposition idea of the penalty function

approach. The overlapping joint capacity constraints in (2)

are placed into the barrier term of the objective function

in order to enable the successive solutions of independent

single commodity problems in a sequence of subproblems. The

selection of the logarithmic or inverse barrier function is

not arbitrary but has an interesting theoretical derivation.

A. THE DERIVATION OF THE BARRIER FUNCTION

Fiacco and McCormick derive the barrier function from

the Kuhn-Tucker sufficiency conditions for constrained
minima (Ref. 11]. A good and detailed analysis, including

implementations and numerical results, is further given by

12



Wright [Ref. 19]. The derivation shows that the use of a

logarithmic barrier function is not arbitrary since it has a

very natural origin.

For the purpose of this analysis it is convenient to

restate the problem (P) in the following form

(P'') Min f(x) = cx (28)
xEF

s.t. g(x) = bI - Ax 0 (29)

where the objective function (28) has gradient 7f(x) = c and

each constraint in (29) has gradient Vgj(x) - - aj , the

negative of the jth row in A. We associate the dual vari-

ables g, with the constraints in (29) and note that in

comparison with the duals uI of problem (P), g, now takes

the opposite sign : uI = - R1.

Following the derivation of Fiacco and McCormick, we

assume that there exist points in the neighborhood of the

optimal solution to (P'') such that strict inequality holds

for the constraints in (29) i.e., g(x) > 0. Furthermore, we

allow a perturbation of magnitude h in the Kuhn-Tucker

sufficiency conditions for optimality. At some point
S* *

[x(h),u l (h)] near the optimum (x ,ui ) the following

conditions have to hold for h small and for all j e J:

(bI - Ax)j > 0 (primal feasibility) (30)

R 1 lj (bl - Ax) - h > 0 (31)

(perturbed complementary slackness)

13



111lj > 0 (32)
91~-aj) 0. (dual feasiblity)

c - j Rlj (-aJ) =0. (33)

Rewriting (31) as =lj = h / (b, - Ax)j and substituting in

(33) yields :

c - h Ij [(bl - Ax)j]-i (-aj) = 0. (34)

Using the notation gj = (bI - Ax)j 0 for all j E J

equation (34) is of the general form

17B(h,x) = Vf(x(h)) - h g[x(h)] - 0 (35)

gj[x(h)]

and simply means that the gradient of the objective function
B(h,x) = f(x) - h i ln(b I - Ax) (36)

vanishes at x(h). This is the logarithmic barrier function!

Note that no constraint qualifications are necessary since

all constraints in the MCFP are linear.

Fiacco and McCormick show that the second order

sufficiency conditions are also satisfied for B(h,x) at.*
[x(h),u I (h)] near the optimum x and prove the existence of

x(h) satisfying these conditions. It is also shown that the

Hessian matrix is positive definite for small h.

The same authors obtain the inverse barrier function

from a modification in the derivation above that enforces

nonnegativity in (32) by introducing a variable I such that
2 . 91j- The logarithmic barrier function seems to be the

more fundamental approach.

14
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B. PROPERTIES OF THE LOGARITHMIC BARRIER FUNCTION

The basic properties of the barrier function are again

given by Fiacco and McCormick [Ref. 11] as well as by Wright

[Ref. 19] and can be stated as follows for the MCFP :

For a decreasing sequence {hk} and associated minima {xk }

the following conditions hold

B(h, x k < B(hk-lx k l  (37)

for sufficiently small hk and bounded (bI - Ax)j, and

cxk < cxk -l, (38)
in(b 1 - Ax) *k 5 1 j in(b I - Ax)j , (39)

l'm hk j iln(bI - Ax) jk - 0, and (40)

l'm B(hkxk) - cx. (41)
h 'W

The following small example will illustrate these

properties. The problem consists of a nonlinear objective

function and a single constraint : Min 2x2  s.t. x 1 and

has the optimal solution x = 1. The barrier function

B(h,x) = 2 x2 - h ln(x-1) has a closed form solution
x(h) - 0.5 + (0.25 + 0.25 h) 0.5

* The solutions are shown in Figure 1 for linearly decreasing

values of h from 20 to 0.1. The change in x as a function

of h and the corresponding logarithmic term are depicted in

Figure 2.

0



I
r(x/H))

-- 1 (X.H)X(H

0 5 0 1 0 0 15 0 2 0 0

rIERATIONS ,H DEC tEASINa 20-0
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FigFigure 2 : x(h) and b(h,x) for h decreasing

.' It is interesting to observe that the path of x(h)
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towards its boundary x = 1 is smooth and can be well

approximated by a straight line until B(h,x) reaches its

maximum. From that point on the rate of change in x(h)

N increases slightly. Similar results are obtained for

different objective functions. Returning to the multiple

constraint barrier function for the MCFP, the maximum of

B(h,x) is obtained for a value h' which satisfies the sta-

tionarity condition I ln(b I - Ax(h'))j= 0. This can only

occur if some components of (bI - Ax(h)) are less than or

equal to one, i.e., some constraints are almost tight.

Thus, we will not be able to observe the property in (37)

0 until the final stage of the algorithm when relatively small

values of h are attained.

The properties (38) and (41) are the most important ones

for practical purposes. Starting with a feasible (interior)

point, the algorithm produces a nonincreasing sequence of

objective values which converges to the optimal value of (P)

and provides intermediate feasible solutions along its path.

This path of x as a function of h describes a trajectory

that has already been studied by Fiacco and McCormick [Ref.

11] as well as by Wright [Ref. 19]. The existence of this

trajectory could be utilized in an extrapolation technique

predicting the next iterate or even x . Its implementation

for the large-scale MCFP is not investigated here. However,

1'7



we will be able to get a good feasible solution after only a

few iterations without using an extrapolation technique.

One final property is the robustness of the barrier

function method: Mifflin [Ref. 20] showed that it is

sufficient to solve B(h,x) at each iteration only

approximately, within a predetermined tolerance, while still

achieving convergence (at a lower rate).

C. COMPUTATIONAL CONSIDERATIONS

Any barrier function technique requires an interior

starting point. It may not be easy to find a starting point

and the performance of an algorithm is influenced by the

quality of this initial solution. We utilize the capacity
A A

allocation mechanism y = CA(x) for the generation of an

initial starting point.

The transformation of (P) into a nonlinear programming

problem requires an effective NLP solution methodology. If

a line search is part of this method, any discrete-step line

search procedure along an improving direction may cause the

evaluation of B(h,x) at one or more infeasible points. This

requires extra precautions during the implementation,

resulting in additional computation time.

Ryan [Ref. 21] points out that for small values of h the
auxiliary function B(h,x) becomes very "steep valleyed" and

the gradient VB(h,x) can take large values in a small

neighborhood of x(h). Therefore, a termination criterion

_J18
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*based on the magnitude of the gradient alone may be critical

as h becomes small; termination criteria based on the

difference in successive objective values may lead to

premature termination. We will consider both criteria and

take the risk of not solving the problem optimally at each

step.

Another well-known difficulty of barrier function

approaches is the ill-conditioned Hessian matrix of B(h,x)

for small h (see,for example Bazaraa and Shetty [Ref. 12],

Wright [Ref. 19] or Ryan [Ref. 21]). This problem emerges

only in the final stage as h -+ 0. For large-scale program-

ming purposes the achievement of a solutiom which defers

- from the optimum only by some small value e ( e-optimality)

is normally sufficient. Such a solution may be obtained

before the ill-conditioning becomes bothersome.

Another issue that significantly influences the perfor-

mance of the algorithm is the choice of the initial barrier

parameter h and its rate of decrease. Lootsma [Ref. 22]

showed that the absolute difference II x(h) - x II is of

4- the order O(h) for the logarithmic barrier function. Ryan

* [Ref. 21] uses this linear relationship to propose a

1-k

generating relation of the form hk 01-k h0  where
0

k = 1,2,3,..., and h0 is positive.

00
* The suitable choice of the initial value h0 is a more

critical issue, since theoretically h0 can take any value

A
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greater than zero and up to infinity. Intuitively however,

h0 should depend on the cost and constraint structure of the

problem. One possible choice would be to interpret the

parameter h as a scaling factor between the cost vector and

the set of constraints placed into the objective function.

This leads to the suggestion that we achieve initial balance

at the starting point x0 such that cx0 = h0  j iln(bl-AxO) j.

Instead of analytically deriving hO , simply taking an

multiple a (a greater than one) of the maximum cost value in

connection with a constant rate of decrease has performed

well in test problems :

= Y Cmax hk+l = a * hkfor k > 1 and 0 <a< .

In general, we recommend choosing ho too high rather than

too low as the algorithm will more quickly adjust to high

values rather than low values.

0:



III. THE LOGARITHMIC BARRIER FUNCTION DECOMPOSITION

USING RESTRICTED SIMPLICIAL DECOMPOSITION (RSD)

The basic idea of the barrier function decomposition for

the MCFP is to place the coupling constraints (2) into the

logarithmic term of the barrier function as derived in

Chapter 2. The resulting formulation (BP(h)) constitutes a

nonlinear programming problem with linear network flow

constraints (3) and (4) . Using the restricted simplicial

decomposition technique (RSD), we will decompose the problem

* into a nonlinear master problem and a set of subproblems,

which require only the solution of iPJ independent pure

network flow problems. The master problem has a reduced

search space described by a fixed number of retained extreme

points, which are generated in the subproblems.

Lower and upper bounds on the optimal solution to (P)

can be easily established. The analogy with the penalty

decomposition is interesting and worth pursuing. The

solution method RSD used in the penalty function decomposi-

tion also proves to be effective for (BP(h)) and is descri-

bed first.

A. RESTRICTED SIMPLICIAL DECOMPOSITION (RSD)

The basic difference between a linear programming

problem and a nonlinear programming problem with linear
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constraints is the fact that the optimal solution will

normally not be an extreme point of the constraint region.

The familiar Frank-Wolfe algorithm [Ref. 23] takes

advantage of the specialized constraints by generating an

extreme point solution of the original problem in a linear

subproblem whose objective function is the linearization of

k?, the original objective function at the current iterate

(given an initial solution) . A master problem provides a

new iterate via a simple line search between the previous

iterate and the new extreme point. The main disadvantage of

this decomposition algorithm is its susceptibility to slow

convergence, especially when the line search direction

becomes orthogonal to the gradient of the objective function

(e.g., see Wolfe [Ref. 24]).

The method of simplicial decomposition is due to

Geoffrion (Ref. 25], von Hohenbalken [Ref. 26] and Holloway

[Ref. 27]. A nonlinear master problem replaces the line

search of the Frank-Wolfe method by extending the optimiza-

[- tion to the convex hull of all extreme points generated in

the linear subproblems. This solution method relies on an

- effective solution of the nonlinear master problem.

Although the master problems have only simple convexity

constraints, the increasing number of extreme points makes

the implementation of this technique unattractive for the

solution of large-scale programming problems.
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The disadvantage of simplicial decomposition led to the

idea of restricted simplicial decomposition (RSD) as develo-

ped by Hearn, Lawphongpanich and Ventura [Ref. 17] . RSD

limits the size of the master problem by fixing the maximum

number r of retained extreme points. The master problem

optimizes over the simplex of these extreme points and the

iterate obtained from the previous master solution. Any

newly generated extreme point replaces the old extreme point

with minimum weight in the expression of the current iterate

as a convex combination of the retained extreme points and

the prior iterate. After solving the new master problem,

all extreme points with zero weight can be discarded.

If r is set to its minimum value r = 1, RSD specializes

to the algorithm of Frank-Wolfe. For the maximum value of r

(the finite number of extreme points) the method represents

- simplicial decomposition. The solution to the master

problem becomes harder as r is increased, but is rewarded by

significant improvements in the convergence rate to the

optimal solution (see Hearn, et al., [Ref. 28]).

The decomposition of (P'') is formed in the following

* manner: Let Xk denote a matrix in the kth iteration of the

master problem whose columns are a set of r extreme points

. -. from F, let xk- be the solution of the previous master

problem, and let k - Xk U (Ak- 1). The master problem in
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terms of the weights w at iteration k becomes,

for a fixed h,

(MP2 k) min B(h,Xkw) = cxkw - h j iln(b 1 - AXkw) j(42)

S.t. 1 w =1 (43)

w Z! 0, (44)
A A A

which has solution wk in terms of w and solution xk = kwk

in terms of x.

The subsequent subproblem optimizes the linear ap-
A

proximation of B(h,x) at xk over F, which is equivalent to

(SP 2 k) min 7B(h,xk)x (45)
xEF

It is convenient to introduce the notation (bI - Ax)t to

represent the vector (bI - Ax) whose components are taken to

the tth power. Then, (SP2k ) can be written as

(SP2k) min (c - h[(b I - Axk)l]T A)x (46)
xeF

Using the relationship in (31), we observe that we obtain an
A A A k -

estimate g, of the optimal dual variables as gl= h(bl-Axk)-i

at each iteration. Substituting into (46) yields a sub-

-problem as

(SP 2 k) min (c + glA)x. (47)
• xE F

0 F

* .* This subproblem resembles a standard Dantzig-Wolfe decom-

position subproblem as it would be used in a dynamic column

generation approach to problem (P) with dual estimates

A 2A

Ul = - LI" This issue is not discussed here; see Staniec

S.. (Ref. 4].
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Due to the block structure of the constraint matrix N,

(S P2 k) permits independent solutions for each commodity.

However, each solution to (SP2k) is not necessarily a

feasible flow in (P) and of course, is not an interior

point. As a starting point, the barrier function approach

requires an initial interior point, which may be obtained as

follows. First we solve a subproblem with h = 0, and

yielding solution x0 . Then, using the capacity allocation

mechanism = CA(x0), we further reduce the capacity by

setting y' = b * y for 0 < b < 1. Finally, we solve

subproblem (SP!(y')) to get an initial interior pointSA

solution to (P).

Starting with this solution in the master problem we

simply limit our search to that part of the convex hull of

extreme points plus the current iterate which provides an

interior point solution as next iterate. This will be

discussed in connection with the solution of the nonlinear

master problem.

B. SOLUTION OF THE MASTER PROBLEM

The reduced gradient method is a well-known approach to

solving a nonlinear program with linear constraints and is

used here for solving the RSD master problem. The method

was first proposed by Wolfe [Ref. 28] and modified by

McCormick (Ref. 29]. The basic idea is the partition of the

variables x into m basic variables xB and n nonbasic
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variables xN as done in the simplex algorithm of linear

programming. This induces a partition of the constraint

matrix A into parts B and C, where B is assumed nonsingular.

The NLP then takes the form

min f(x) = f(xB, xN) (48)

s.t. Ax = BxB + CxN =b (49)

XB,XN 0. (50)

The variables xN are regarded as independent variables

whereas xB are dependent variables completely determined by

xN and equations (49). Consequently, the objective function

can be considered to be a function of xN only and the

constraints reduce to the nonnegativity constraints on the

independent variables and the limitation in their change

that provides nonnegative basic variables. This fact allows

the application of a modified steepest descent method

accounting only for the nonnegativity constraints. The

reduced gradient rk at iteration k is of dimension n-m and

computed as :

rk = (rBk,rNk) = xf(xk,x ) - VxBf(xB ,x N ) B-
1 C. (51)

To find an improving direction d such that Vf(xk)d < 0, we

select at each iteration k

£ j if rj ! 0

dN. = for xi nonbasic (52)

xjrj if rj > 0
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and

dBi = - (B-ICdN)i for xi basic. (53)

A new direction needs to be computed as soon as a nonbasic

variable attains its zero level. If a basic variable

becomes zero, the partition must be modified. Also, this

method requires a nondegenerate solution at each iteration.

A more detailed description can be found in Luenberger

[Ref. 10] or Bazaraa and Shetty [Ref. 12].

The use of the reduced gradient method for the solution

of the master problem (MP2k) results in some nice simplif-

* ications due to the presence of only a single convexity con-

straint. There is only one basic variable wi to be selected

and the reduced gradient becomes

rj = cxj - cx i + h[(b I - AXw)-I]T (Axj - Axi) (54)

for the nonbasic variables wj. Computing the direction

component for the basic variable wi reduces to

= - B-Cdj = - Zjdj (55)

and for the nonbasic variables wj

rj if rj : 0

dj (56)

-wjrj if rj > 0.

The line search in the direction d is limited by the non-

negativity constraints. Thus a maximum steplength a' is
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computed as

a' = min {-wk/dk I dk  0 , for all variables wk). (57)

Any move in the direction d of size a must also satisfy

b1 - [AX(w + ad)] > 0 for all 0 S a S a' (58)

or equivalently

bI - AXw > aAXd for all 0 a S a'. (59)

Since bI - AXw > 0 , this holds for all arcs 1 with

(AXd)1  0. If (AXd)1 > 0 for some arcs 1, we perform a

ratio test to select

X'' < min { (bI - AXw)1 / (AXd)1 I (AXd)1 > 0) (60)

and set

max = min ({',a''}. (61)-ax

*" The master problem solution is summarized as follows:

>. Step 0: Set w such that lw =1, wk 2 0.

Select a basic variable: use the largest wk.

Step 1 : Compute the direction d as determined in equations

(54) through (56). If d = 0, stop.

Step 2 : Solve min B[h,X(w+ad)] s.t. 0 5 a : amax in a

line search, yielding am. Let w - w + amd and

go to Step 1.

0 The convergence of this method may not be satisfactory

since it represents a greedy descent method in the reduced

space of the nonbasic variables. Reklaitis et al. (Ref. 30)

suggest a convergence acceleration technique by using a more

effective unconstrained search method as long as the basic
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variables do not change. This is especially relevant in our

case where the prior iterate frequently takes the largest

weight and remains the basic variable. Therefore we apply a

conjugate gradient method, that has proven its effectiveness

in unconstrained optimization and is easily implemented.

The modified direction for the first iteration and any

iteration following a basis change becomes

- r if wj > 0 or rj < 0-rj

dk = (62)

0 otherwise,

and for all other iterations

* ii rk H 2

dk rk + d k-iN 1rk 2 (63)

The direction for the basis variable is the same as in the

standard reduced gradient method. The use of the conjugate

gradient provides significant improvements. In a typical

master problem with only four extreme points, the reduced

gradient method used 500 iterations to obtain a solution

that was still 13% worse than a solution obtained with the

conjugate gradient method in 28 iterations.

* Each line search requires frequent evaluations of the

objective function and consumes a fair amount of computation

time. We can improve this by modifying the objective

* function to include only those arcs in the barrier term that

* are potentially able to violate the joint capacity con-
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straints at the current iteration. These arcs are easily

identified and recorded in a set Jv containing all arcs that

ever had a violation in any of the extreme points generated

in the subproblems. The arcs j 0 TV cannot violate the

joint capacity constraints in a solution to the master

problem that is a convex combination of the extreme points

and the feasible prior iterate. Thus we establish the

barrier only on a reduced subset of the joint capacity

constraints. This set is updated at each solution of a

subproblem in case a new arc experiences a capacity viola-

tion. This procedure amounts to a modified barrier func-

* tion. However, in a finite number of iterations, the number

of arcs in Jv will take a fixed value IJv IJI and no more

arcs will be added to Jv. From this point on we are back to

a pure barrier function as derived in Chapter 2 and conver-

gence of the algorithm is preserved.

C. LOWER AND UPPER BOUNDS

Since we will rarely be able to find the optimal

solution to (P) within a reasonable number of iterations, we

need to establish bounds on the optimal solution.

Lower bounds can be derived from the Lagrangian dual

problem

(LR(ul)) min (c - ulA)x + ulb I , which provides a lower
xeF

bound on (P) for any fixed uI  0.
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Using the dual estimates Ul = - 9I' v.i.z.
A A

u - h (bI - Ax)-  for each solution x provided by the

master problem, we obtain
A A A

(LR(l)) min (c + iilA)x - glbl. (64)
xeF

Recalling the subproblem (SP2k) min (c + RiA)x , we find
xr F

by comparison that both objective functions differ only by

the constant term 111b, and yield the same optimal solution

x Thus, we obtain a valid lower bound V(gik) by subtract-
A

ing the constant term RIb:

V(ulk) = (c + ulkA)x k  kb (65)

Furthermore, since in the limit xk -4 x * and A k i , it
AL * * *

must be that V -+ (c + gI A) x - I b, cx

Upper bounds on the optimal solution are generated in

each master problem, since we restrict the solution to an

interior, feasible point. Thus, if xk w kwk solves (MP2k),

the upper bound

V(xk) = cxk (66)

is readily available at each master problem solution. Due

to the convergence property (41) of the barrier function,
A *

it must be that V(xk) - cx as h -+ 0.

However, we are usually able to obtain a better upper

bound by utilizing the capacity allocation mechanism

A A A

* again. Let y = CA(xk) at some iteration k and let xk be an
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0

interior point. Then, for all arcs j 6 JV' (Ax - bl) j < 0
A A kand ypj xpj for all p,j from equations (24). Then

the following relationship must hold:

V(xk) = ik n mi cx min cx = V(y),
xeF xeF

A A

A ^k
since y x

A

Thus, solving SP1(y) yields a feasible solution with value

;V(A) :g V(A k.

D. THE ALGORITHM RSD(B)

The algorithm RSD(B) using a barrier function decomposi-

tion can now be presented. An initial lower bound is

obtained by solving the problem without the joint capacity

constraints (2). If this solution is feasible in (P), it is

optimal. Otherwise we obtain a feasible solution via the

capacity allocation mechanism, which gives an initial upper

bound. The algorithm generates a sequence of extreme points

in the subproblem and an interior point solution in the

master problem until e-optimality is achieved. As a

heuristic, we invoke the capacity allocation mechanism at

every rt h iteration of the master problem to improve the

current upper bound and decrement h at this time, even if

the master problem is not solved optimally for the cur-

6 rent h.
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Notation

Xk  matrix of retained extreme points at iteration k

Sk current master problem solution

xM previous master problem solution

k matrix Xk augmented with xM

xk optimal solution to subproblem (SP2k)

H(X) convex hull of X

CA(x) a capacity allocation based on x

JV set of joint capacity arcs which are violated in

at least one subproblem solution xk.

h barrier parameter used in 1th parameter update

r maximal number of retained extreme points

E stopping criteria for near-optimality.

Algorithm RSD(B)

Input The network G = {I,J}, joint capacity vector bl,

cost vector c and supply/demand vector b2 .

Output : Best obtained solution xk and final bounds V, V.

Step 0 : (Initialization)

Select h0 > 0, e > 0, r > 1, 0 < b < 1.

Set k = 0, 1 = 0,

X0 = 0 J = 0 ' = 0 for all j e J.
A.

Solve (LR(0)) x= argmin {cx I x e F }.
x A O

00

Set V - c x 0  Set JV J j I (b I -Ax )j < 01.
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00
If =V 0, stop with x0 optimal.

A A
0  

A, A

Else, set y - CA ( x), y' = b * y and

A0
solve SPl( y') yielding x y

Set V = cx y0 . If (V -V)/V < e, exit with x 0 'V, V.

Else, set X X x -x~, , k 1

Step 1 :(Solve Pk

Solve x= argmin ((C + gikA)x I x e= F1,
x

whr k~b 1 for all j e JV and
Ak

-1 0 for all j Jv.

Set i V= V U {j I (b, -xk) < 0).

Set V( 9 1k) =(C + ik )x k _ 9 1 kb1.

if Vlk) < V, set V = VA k

if (V-v) < e, exit with ; C, ;V1 V.

If (C + 91 kA) {xk _ x k) t 0, fk solves B (hi, x)

Set 1 - 1 + 1 and go to Step 2.

Else

(i) if IxkI<rXk+1l X xk

(ii) if ix k I r , drop the column of X k which had

the smallest weight wiS in the convex corn-

bination forming x'k and replace it with xk.

V Go to Step 2.
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Step 2 (Solve the master problem MP2k)

Set k+l = Xk+l U {XM}.

Find xk+l =argmin { B(hl ,x) I x e H(Xk + )
x

=i w +xi where 1 i i Ik+1 and

xi is the ith column in k+l

Sk+1
Set xM = x

If cxk+l < V , set cx k +1

If (V - V) / V < e, exit with k, v, v"

If k+l is an integer multiple of r, do a capacity

A

allocation :Set y = CA(xk+l) and solve SP1 (Y),

yielding V(y) = CXyk+l

A

If V(y) < V, set V = V(y).

If (V - V) / V < E, set = yk+
A^k

exit with x, V, V.

Set hI + I = a * hI  (0 < a : 1) and 1 = 1 + 1.

Set k = k + 1 and go to Step 1.

C. IMPLEMENTATION OF RSD(B)

The algorithm RSD(B) has been coded in FORTRAN which is

still an extremely efficient language for mathematical

programming purposes (see MacLennan [Ref. 31]). A sophis-

ticated data structure is used for the storage of sparse

matrices and vectors. Allowing direct communication with

the X-system solver of Brown and Graves [Ref. 32]. Integer
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arithmetic is performed to the extent possible, especially

for the subproblems which use a GNET solver [Ref. 1] to

produce rapid solutions.

A design goal was set to provide a decomposition

procedure which solves only a single commodity problem at a

time, and thus operates easily within a modest memory

- region (say, two megabyte virtual storage capacity). Other

information such as current incumbent, previous iterate,

prior extreme points, etc., have to be kept on external

storage devices. This approach leads to considerable

input/output operations at the expense of computation time,

but the maximum problem size in terms of number of com-

modities remains independent of the available virtual

storage. Also, the resulting algorithm is highly parallel

by commodities.

The implementation of the master problem contains

several parameters such as the number of retained extreme

points, stopping criteria for optimality at each iteration,

the final interval of uncertainty in the line search and an

upper limit on the maximum number of line searches con-

* ducted. Furthermore, the weights of the extreme points and

the objective function evaluation are subject to roundoff

errors. For a sensitive objective function, special care

* is necessary to insure convergence. Fortunately, we will

confirm that the barrier function decomposition is a robust
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procedure that does not require an optimal solution to the

master problem at each iteration. Good results are obtained

over a relative broad range of parameters.

The comparison of the barrier algorithm RSD(B) with the

penalty algorithm RSD(P) of Staniec [Ref. 4] reveals that

they are very similar in their sequential structure. This

similarity permits embedding both algorithms in the same

computer program and creates the potential for devising a

hybrid algorithm which takes advantage of each. The

relationship between RSD(B) and RSD(P) is easily establish-

ed. The dual estimates obtained from the penalty approach

take, for some vector x and joint capacity constraint j, the

form
= h [(Ax - bl) t > 1 (67)

versus

lj =h [(b l - x -1 ]B - , (b I -Ax)j > 0 ,j r JV (68)

for the barrier approach. However, the gradient of the

penalty function at some vector x takes the same form as for

the barrier function, namely

AD

Qlh,x) -- c + P A (69)

versus

--B(hx) = c (70).
Thus, besides the fact that the barrier function decomposi-

tion requires an initial interior point, both methods use

37

lo,
I



the same subproblems and master problem with different input

for the dual estimates and different function evaluation

routines in the line search.

14
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IV. COMPUTATIONAL RESULTS

In order to assess the capabilities of the algorithm

RSD(B), we solve different versions of the test problem

described in Chapter I. This problem suite has been exten-

sively studied by Staniec [Ref. 4], using different al-

gorithms. The optimal solution for four and ten commodity

problems is available for comparisons, obtained by solving

the problem (P) using the X-system [Ref. 32]. The four

commodity problem (4H) has approximately 13,200 constraints,

041,600 variables and optimal solution value 130,739,585. The

ten commodity problem (10H) has about 33,000 constraints,

I. 104,000 variables and optimal solution value 169,532,339.

For purposes of direct comparisons, the penalty algorithm

RSD(P) of Staniec [Ref. 4] has been converted into our data

structure and uses our computer program framework. RSD(P)

has been improved by taking advantage of the conjugate

gradient modifications in the master problem.

First, we will evaluate the performance of RSD(B) with

different initial parameters in solving problem 4H. Subse-

quently, the comparisons between RSD(P) and RSD(B) are

presented for problems 4H and 10H. Possible modifications of

algorithm RSD(B) are then discussed. Finally, we test with

a 100 commodity problem having more than one million vari-

ables and 300,000 constraints.
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A. PERFORMANCE OF THE ALGORITHM RSD(B)

The following results were obtained on an IBM 3033 AP

under VM/CMS. The Central Processor Unit (CPU) utilization

time is used as a performance measurement. An "e-optimality

gap" is computed from the current upper and lower bounds as

(V- V ) / cx or estimated as ( V - V ) / V

Since the barrier function decomposition requires an

interior starting point, we will first investigate the

response of RSD(B) to different starting points. Let Cmax

denote the maximum cost value in the network. While fixing

h0 = 2 * cmax, a = 0.5, and r = 7 in problem 4H, the choice
A

of the parameter b establishing y' b * y resulted in the

optimality gaps listed in Table 1:

Gap (%)

initial gap 66.76 51.93 39.42 26.95

iteration 7 10.21 9.87 9.56 10.49

iteration 16 4.60 3.98 4.60 5.06

iteration 24 3.35 2.25 3.05 2.73

iteration 32 2.03 1.42 1.53 1.86

iteration 40 1.19 0.99 1.28 1.38

iteration 48 0.75 0.68 0.89 0.89

reduction b 0.80 0.85 0.90 0.95

Table 1 Response to Different Starting Points

Problem 4H
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If the parameter b is selected too low, the dual es-

timates associated with the resulting interior starting

point may not generate good, initial extreme points. If the

starting value is chosen too high, the interior point gets

too close to the boundary of the constraint region. The sub-

sequent line search in the master problem is confined to a

smaller search space of the constraint region resulting in

slower convergence. Both values, b = 0.85 and b = 0.9, work

well in the test problem. Further analysis will be based on

b = 0.9. Good results with RSD were obtained for any value

of r between 6 and 8.

The lower bounds obtained with the algorithm RSD(B) are

sensitive to the initial parameter h0 . Recall that the dual
A 

-

estimates are computed as g, = h(Ax-bl)-. If the barrier

parameter h0 is relatively small, we approach the boundary

very soon. As the slack on some jointly capacitated arcs

almost vanishes, its reciprocal may take huge values result-

ing in extreme dual estimates. This situation leads to large

oscillations in subsequent solutions of the subproblem. The

phenomenum is demonstrated in Figure 3 where h0 . 0.5 * cmax.

As h0 is increased, this effect seems to disappear, as shown

in Figures 4 through 6. It is interesting to observe that

some good lower bounds are obtained under all conditions.

The extreme result obtained for the small value of ho

suggests that h0 2 cmax is the better choice.
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If we want to select an initial value h0 that balances

the linear part cx and the barrier term in the objective

function, we have to take into account that lJv1 is not fixed

but initially increasing. We do not have sufficient inform-

ation about the size of the barrier term unless at least one

pilot run has been conducted. Using the information that

about 6% of the arcs are finally contained in the set Jv for

problem 4H, we would obtain a value of h0 < 0.5 * cmax, which

is not the best choice, but may serve as a lower bound on h
0

The differences obtained for the upper bounds are less

significant. Figure 7 shows the sequence of values cxk

obtained for the same choices of h0 as before.

NZ

OPIMUM

0 220 30O

SFgTIME (SECONDS)

Figure 7: Response of cXk to h, Problem 4H.
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Any decrease in h creates a disturbance in the dual es-

timates. Since the master problem is not solved optimally

for each value of h, the algorithm may not always provide

better lower bounds before the next update of h occurs. We

are still able to get good lower bounds when a relatively

moderate rate of decrease a = 0.5 is used.

A solution trajectory for problem 4H is given in Figure 8

using h0 = 1.5 * cmax, where a 0.6% optimal solution is

obtained within 200 seconds. Instead of plotting the

current upper and lower bounds, the current values of V(g)

and cxk are shown. We observe the almost strictly decreasing
Ak

sequence of cxk although the master problem is not solved

optimally. The improved upper bounds obtained by the

capacity allocation mechanism are denoted as cx' and indi-

cate that significant gains are obtained only at the initial

stage. The differences between cxk and cx' nearly vanish

after about 100 seconds although slightly tighter upper

bounds are produced throughout.
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Figure 8: Trajectory of RSD(B), Problem 4H

*It seems to be typical for the barrier function that good

upper bounds are obtained at an early stage, whereas the

lower bounds trail behind.

The trajectory of the objective value B(hxk) together

with its linear part cx is given in Figure 9. We find that
A *

B(h,x ) still approaches the optimum cx from below, the

barrier term takes negative values over the whole range. The

steps in its trajectory are due to the decreases of h by a

factor of 0.5.
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Figure 9: Values of the Objective Function, Problem 4H

A direct comparison between the algorithms RSD (P) and

RSD(B) shows that the barrier function decomposition is less

effective in the solution of the smaller problem 4H but is

competitive in the problem 10H. The solutions to problem 4H

are compared in Figure 10 were ho 0 .O0l*c max for RSD(P) and

h 0 l 1 5*c max for RSD(B).
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Figure 10: Comparison of RSD(P) to RSD(B), Problem 4H

If we use the same initial parameters for the solution of

problem 10H, we obtain an interesting result. The trajec-

tories are given in Figure 11. Obviously, the initial

barrier and penalty parameters, respectively, are too low in

both cases, yielding poor and oscillating lower bounds for

RSD(B) versus bad upper bounds for RSD(P) due to insufficient

penalty on the capacity violations. (This situation suggests

investigation of a hybrid algorithm, incorporating both

RSD(B) and RSD(P)).
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Figure 11: RSD(P) Versus RSD(B) , Problem 10H,

Same Initial Parameters

0
The initial parameter h0 has been increased until good

results are obtained for both methods. The result is shown

in Figure 12. We observe that the final values of V(Ak)

decay for both algorithms. We do not generate improving

lower bounds. Apparently, the parameter h is updated to

rapidly before the master problem generates good dual

estimates. Staniec [Ref. 4) reported similiar poor lower
-S bounding for problem 10H.
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Figure 12: RSD(P) Versus RSD(B), Problem 10H,

Best Parameters

In summary, we find that RSD (B) provides good upper

bounds at each iteration and does not depend on the capacity

allocation routine as the penalty algorithm does. On the

S other hand, the penalty algorithm provides better initial

dual estimates, resulting in better lower bounds. Both

algorithms converge to a good solution within a reasonable

S amount of time.
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B. POSSIBLE MODIFICATIONS OF THE ALGORITHM

A first modification could be to postpone a further

decrease of the barrier function parameter h until at least

one better lower bound has been obtained compared to the

bound generated for the previous value of h. Note, however,

that the sequence of upper bounds is almost strictly decreas-

ing from iteration to iteration and controlled by the

magnitude of h. A higher barrier parameter results in higher

upper bounds. Therefore, this choice should depend on the

problem at hand. If a fast approximation of the solution is

desired, h should be decreased more rapidly. If a higher

resolution is required and sufficient computer resources are

available, a better solution of the master problem is

necessary, yielding better intermediate lower bounds.

Besides such a change of input parameters, a structural

modification was also investigated. Since each capacity

reallocation routine creates a subproblem solution that is

feasible and at least as good as the current upper bound,

this information can be passed to the master problem by using

this solution as an additional "extreme" point. Experimenta-

tion on the test problem showed however that no significant

improvements were obtained. This may be because the dif-

ference between the interior point solution of the master

problem and the solution of the capacity reallocation
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procedure vanishes while the lower bounds are still trailing

behind. Experimentation on other problems may yield dif-

ferent results.

The capacity allocation mechanism can be modified

further. For RSD(B), capacity allocation for an interior

point amounts to a redistribution of the available slack. As

stated in equation (24), each commodity receives the same

additional amount. A proportional allocation would be given

A A AAA

by ypj = xpj + xpj (b I - Ax)j / (Ax)j. (71)

- The disadvantage of this procedure is that a commodity with

zero flow on that arc gets zero capacity allocated. To

overcome this drawback, a convex combination of both methods

is possible:

A A A A A

ypj = Xpj + Bi Xpj (bI - Ax)j / (Ax)j
AJ

+ 82 (bl - Ax) j / IPI (72)

where 1 , B2 > 0 and 81 + 82 = ".

Experimentation with the test problem 4H showed improve-

ments in the upper bounds in both cases, but since the lower
AP%

bounds are still weak, the overall gain is not significant

for this problem.

RSD(B) would be superior to RSD(P) if we could establish

4S 
A4 better lower bounds. The dual estimates L are a function of

0 the barrier parameter h and the slack on the joint capacity

arcs. Different dual estimates are obtained if we use a
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different value of h for each individual joint capacity arc.

This approach leads to the weighted barrier function like the

one proposed by Megiddo [Ref. 14] in general linear programm-

ing:
B(h,x,w) = cx - h j wj 1n(b I - Ax)j, (73)

where w is any real vector with positive components. Some

experiments were done with different weights. All arcs that

are violated in the initial solution with completely relaxed

joint capacity constraints are more likely to be tight in the

optimal solution. Therefore they are assigned a reduced

weight to enable a faster approach to the boundary. Another

weight factor used was proportional to the remainLg slack on

the corresponding arc. Unfortunately, neither attempt

provided better solutions.

The final modification is a hybrid barrier-penalty

algorithm. Starting with the barrier function decomposition

in problem 10H, we shift to the penalty algorithm after 16

iterations using the extreme points generated so far. The

main problem is the adjustment of the parameter h. Since we

obtain good lower bounds for relatively small values of h,

* we reset h to the same initial value that we used in the
independent approach. The results displayed in Figure 13 are

unimpressive but further experimentation may improve results.

5
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Figure 13 : Trajectory of the Hybrid Method

Finally, we obtain a solution to the 100 commodity

network flow problem 100H which is about 3.5% optimal within

2650 seconds after 25 iterations and about 2.5% optimal

within 3800 seconds after 38 iterations. The initial value

h0 has been increased to h0 - 3 5 *Cmax .  Staniec [Ref. 4]

reports a solution to this problem obtained by a penalty

method that achieved 4 % optimality after 1000 seconds and

finished with 1.5% optimality after 3000 seconds. Our method

0 did not show the same performance. The solution trajectory

as shown in Figure 14 seems to indicate that the upper bounds
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are already very tight whereas the lower bounds are again

poor. The objective function value (not shown) is still less

than the lower bound, a further decrease of h is necesarry

for convergence.

z
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Fiqure 14 Solution Trajectory, Problem 100H

The distribution of the CPU time between the master

problem and the subproblems changes as we increase the number

of commodities. Although the solution of each pure network

flow problem requires less than one second CPU time per

commodity in the average for all test problems, we find that

the subproblems are expensive to solve and consume the

5
A 5
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largest portion of the total CPU time. This distribution is

shown in Table 2. The amount of time not used by the master

problem or the subproblem is mostly consumed in the

input/output operations.

Problem 4H Problem 10H Problem 100H

Master Problem 25.5% 11.2% 7.1%

Subproblem 49.9% 66.9% 86.3%

Other 24.6% 21.9% 6.6%

Table 2: Distribution of CPU Time for Test

Problems of Increasing Size

However, the subproblem solves for each commodity indepen-

dently and more than one pure network flow problem could be

solved at a time. This feature makes our method highly

parallel with a potential reduction of nearly 1/IPI in

elapsed computation time for the subproblem.
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V. CONCLUSIONS

NThe method of logarithmic barrier function decomposition

is a useful tool for the solution of large-scale multicom-

modity flow problems. The algorithm RSD(B) is a variant of

the price-directive decomposition method. It generates a

sequence of interior points which provide intermediate

feasible solutions while converging towards the optimum. The

technique of restricted simplicial decomposition (RSD) proves

to be useful in the solution of the nonlinear master problem.

However, RSD(B) seems to be robust and does not require an

optimal solution to the master problem. It is competitive

with penalty decomposition methods and relatively easy to

implement. Since it achieves good feasible solutions at an

early stage, it may be used as a starting technique in other

algorithms like the hybrid barrier-penalty technique. The

use of RSD(B) in other large-scale multicommodity flow

.5. problems is recommended.
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